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In this study, one of the prominent and the basic analytical methods for the frequency analysis of non-linear systems, 
Volterra Series method is discussed. Then the computational load of the method and the symmetrization process is 
investigated. For this, a third-order non-linear system model has been used and the frequency response of the system has 
been obtained. The investigation is performed by detecting the periods of every step of the method and the symmetrization 
process. The obtained results are presented in tables and graphs. The factors which affect the performance of the method 
are identified. Finally, parallel computing of the method has been realized on 8-thread computer by using MATLAB

®
 parallel 

processing toolbox and the results (speedup and efficiency) have been interpreted. 
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1. Introduction 
 

The most realistic way to get information about 

systems is to implement the system (physically), to 

interpret obtained results. However, because of some 

reasons such as inappropriate environmental conditions, 

dangerous processes, high cost and time loss, systems 

cannot be implemented physically and experimental 

studies cannot be performed. Therefore, the most rational 

and easy way to get information about systems is 

modelling the relationship between the input and output of 

the systems by mathematical expressions, analyzing 

systems with the appropriate methods and so that the 

desired results can be obtained. Mathematical models of 

the systems depend on the characteristics of elements 

composing the system and environmental conditions. For 

that reason, there are a wide variety of mathematical 

models. According to mathematical models, systems can 

be classified as shown in Fig. 1. In Fig. 1, system classes 

which are coloured grey are attended in this work. In the 

figure, dashed lines mean that the classification on the 

branch is same as other branch’s classification. 

Real systems are modelled completely with a non-

linear structure. Non-linear components are capable of 

accelerating, attenuating, reinforcing or retarding in the 

non-linear systems. The non-linear terms in the non-linear 

system models can be exponential, radical, denominator, 

multiplied with each other or absolute expressions of 

variables. Unlike linear systems, various behaviours such 

as jump phenomena, bifurcation, and chaos can be seen in 

non-linear systems. 

 

 

Fig. 1. Classification of Systems [1]. 

 

 

There are several methods for modelling and analysis 

of the non-linear systems. Approaches as Volterra, 

bilinear, perturbation methods can be used for modelling 

of the systems. There are many methods used in time and 

frequency domains for the analysis [2]. Methods such as 

perturbation method, averaging method, multiple-time 

scale method can be referred as the methods applied in the 

time domain. Methods such as Volterra Series Method, 

describing functions method, generalized harmonic 

balance method can be examplified as methods applied in 

the frequency domain. 
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It is thought that using the time domain methods is 

easier for system analysis. However, system behaviours 

cannot be fully analysed in time domain.  Therefore, for 

the system analysis, especially for non-linear system 

analysis, it is more useful to use the frequency domain 

methods. 

The Volterra Series Method (frequency response 

function method), the generalized harmonic balance 

method, the describing functions method, which are most 

commonly used the frequency domain methods of non-

linear system analysis, are based on the Volterra theory. 

The most basic and general method of these methods is 

The Volterra Series Method. 

The Volterra Series Method is first studied by Vito 

Volterra. He conducted the first study on Volterra Series 

[3]. Volterra showed that a non-linear system can be 

defined and output of a single input analytical system can 

be explained with infinite Volterra Series which is named 

with his name. After Volterra, Brilliant showed that non-

linear memoryless systems can be modelled and analyzed 

by the Volterra Series Method [4]. In Bedrosian and Rice's 

study, The Volterra Series were moved to the frequency 

domain by using the Fourier transform and the harmonic 

probing algorithm was designed so that exponential input 

method was produced and communication systems were 

analyzed [5]. Billing and Tsang also adapted this 

algorithm to discrete. This topic was covered in three 

separate studies [6, 7, 8]. By Billings and Peyton Jones, for 

the direct production of the generalized frequency 

response functions obtained by using Volterra Series from 

non-linear difference equations and non-linear integro-

differential equations, recursive algorithms were 

developed [9,10]. In another study a new error-free 

algorithm for the determination of Volterra kernels of 

discrete non-linear systems was presented [11]. For the 

non-linear system analysis which uses Volterra Series 

theory, some truncations should be done. Billings and 

Lang handled this context and developed an efficient 

algorithm for determining the truncations and useful terms 

for Volterra Series analysis [12]. A new procedure, which 

processes Volterra kernels by recursive algorithms, was 

presented for determining the parameters by Chatterjee 

and Vyas [13]. In addition, the books written by Schetzen 

[14] and Rugh [15] may be referred as key resources 

related to The Volterra Series method. In the study of 

Peyton Jones, which is the main reference of this present 

work, a simplified algorithm for the computation of the 

frequency response functions was produced [16]. The goal 

of the algorithm is to obtain nth order frequency response 

functions (FRF) without using recursive functions of the 

traditional method. In the new method, only lower order 

FRFs which can contribute to nth order FRF are produced. 

The algorithm of the study has been used in a .NET based 

web interface for non-linear system analysis by Kaçar and 

Çankaya [17]. For non-linear Volterra systems including a 

non-linear state equation and a non-linear output function, 

frequency response functions and characteristics were 

developed and discussed by Jing et al. [18].  Jing and Lang 

developed a new function based on parametric 

characteristics of generalized FRFs for Volterra systems 

modelled by Narx (non-linear auto regressive with 

exogenous input) model [19]. In another study, an 

approach for deriving the Volterra Series expansion for the 

multi-linear discrete system involving input - output 

coupling terms was developed [20].  

This paper is organized as follows. Volterra model 

structure, time domain and frequency domain 

representations of non-linear systems are explained in the 

next section. In the third section, old and new approaches 

of harmonic probing method developed by Peyton Jones 

are described. Then the computational load of the new 

approach which expressed as simplified method in [16] is 

examined in terms in the fourth section. In the fifth 

section, parallel computing of the method is performed by 

using MATLAB
®
 parallel processing toolbox and the 

results have been presented as graphics. The final section 

includes conclusions and suggestions. 

 

 

2. Identification of non-linear systems in time  
    and frequency domains with volterra series  
 

In the time domain, the relationship between inputs 

and outputs of the non-linear systems can be defined as 

follows [3]. 

 

 

Fig. 2. Volterra model structure. 

 

 

It is seen from Fig. 2 that the non-linear system is 

composed of N parallel subsystems from 1 1( )h 
 

to 

1( ,..., )n nh   . The input signal, u(t), is applied to each 

subsystem and the output signal, yn(t), is obtained from 

each subsystem. At the end, outputs of subsystems are 

added and the output of entire system, y(t), is generated. 

This structure can be defined as a mathematical expression 

in Equation (1). 

 1

( ) ( )
N

n

n

y t y t



 

                    (1) 

 
Each subsystem output is defined in the time domain 

as Equation (2). 
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where 
1( ,..., )n nh   defines nth order impulse response 

function of nth order subsystem. Because of multi-

dimensional structure of right side of Equation (2), the 

multi-dimensional Fourier transformation should be 

applied to Equation (2) for transformation to frequency 

domain. To do so, yn(t) is formed as Equation (3) and the 

constraint in Equation (4) must be assured. 

 

 
   

11, , |
nn n n t t ty t y t t         (3) 
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        (4) 

 

where ωi defines of input harmoic frequencies. If the 

multi-dimensional Fourier transformation is applied to 

Equation (2) under the constraints of Equation (3) and (4), 

yn(t) function is obtained in the frequency-domain as Yn 

(jω), in Equation (5). 
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                   (5) 

 

In Equation (5), U(jω) is termed as Fourier transform 

of the input and  1, ,n nH j j   is termed as nth 

order Frequency Response Function (FRF). As a result, the 

output of the system in the frequency-domain can be 

written as the sum of all output components as in Equation 

(6). 

  
1

( )
N

n

n

n

Y j A Y j 


               (6) 

 

 

3. Computation of higher order frequency  
    response functions with harmonic probing  
    method 
 

The most common methods of mathematical 

modelling of systems are methods which use parametric 

approaches such as differential or difference equations. 

One of them which is used to represent continuous-time 

non-linear systems (without delayed) is NDE (Non-linear 

Differential Equations) model.  
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                               (7) 

 

Where li denotes the order of the derivative, cp,q(l1,…,lp+q) 

terms coefficients of the model, p number of the output 

components, q number of the input components of the 

terms, M is maximum order of nonlinearity and m is 

maximum order of input nonlinearity. As an example, a 

mechanical system modelled with a differential equation is 

given in Fig. 3 and Equation (8) [21]. 

 

m

k
a1 a2 a3

f(t)

x(t)

 
 

Fig. 3. Mechanical system model. 

 

 
2 32

1 2 32

( ) ( ) ( ) ( )
( ) ( ) 0

d x t dx t dx t dx t
m kx t a a a f t

dt dt dt dt

   
        

   

                  
(8) 

 

The terms coefficients of this differential equation are 

determined according to the NDE model as Equation (9). 

 

1,0 (2)c m ,
1,0 1(1)c a , 1,0 (0)c k , 0,1(0) 1c   , 

2,0 2(1,1)c a , 3,0 3(1,1,1)c a
 
others 

, 0p qc 
     

(9) 

 

In this presented study, the harmonic probing 

algorithm, which is based on The Volterra Series, has been 

used for the frequency analysis of the non-linear system in 

Equation (8). The harmonic probing algorithm was 

developed by Billings and Peyton Jones in works realized 

in 1989 and 1990 [9, 10]. With this method, the system 

FRFs are obtained using the system's parameters. Thus, 

the frequency-domain behaviours of the systems can be 

analyzed. 

Terms of the systems and their contributions to nth 

order FRF are examined into three groups in the harmonic 

probing method and the exponential input method: non-

linear terms containing only input component ( (.)
unH ), 

non-linear terms containing only the output ( (.)
ynH ) and 

non-linear terms containing input and output components 

together ( (.)
uynH ) [10]. This method is used for 

expressing nth order FRF an asymmetric structure as 

follows. 
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Contributions of (.)
unH , (.)

ynH
 

and (.)
uynH  

functions to nth order FRF are defined with following 

formulas. 
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If the above equations are examined carefully, it can 

be said that the terms which exist only the nth order non-

linear input component can contribute to only the nth order 

FRF. Contributions of the terms containing output 

component to nth order FRF are determined by the 

function expressed with , ( )n pH  . This function can be 

produced with two different algorithms [16, 17]. The first 

of these is an recursive algorithm [10]. 
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(14) 
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                            (15) 

 

Because the algorithm given in Equation (14) and (15) 

is recursive, the algorithm has computationally intensive 

for production of higher order FRFs [16, 17]. The new 

algorithm of PEYTON JONES in [16] was developed in a 

more simple structure to eliminate the disadvantage of the 

old algorithm. In the new algorithm, features of the 

exponential input method were used as in the old 

algorithm and , ( )n pH   function was produced for each 

term of the system model. 

In spite of the old algorithm, the lower order FRFs 

which can be used for computing the nth order FRF, are 

determined with lower process load in the simplified 

algorithm. Then, , ( )n pH   function is produced and it is 

substituted into Equation (12) or (13). The flowchart in 

Figure 4 explains how the simplified algorithm works. The 

process in the first step of the flowchart determines 

combinations of the lower order FRFs which can be 

contribute to nth order FRF and whose orders summation 

is equal to n ( 

1

p

i

i

n


 ). 
i  expresses the orders of 

FRFs which can be contribute to nth order FRF. In the 

second step, input harmonics in set
 
 1, , n   are 

grouped according to produced combinations. In the third 

step, 
1

( , , )
pyf  w w  defines terms which must be in 

, ( )asym

n pH   function except the lower order FRFs. 
i

w  

defines a group of the input harmonics which is 

determined with  1, , p  combination and has i  

frequency components. In this step, 
1

( , , )
pyf  w w  is 

computed for all permutations of each combinations 

produced in former steps. In the last step, desired 

, ( )asym

n pH   function is computed with obtained terms and 

the simplified algorithm is finalized.  
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Fig. 4. Simplified Volterra Series method. 

 

 

After computation of , ( )n pH 
 
functions, the method 

is continued to apply. The desired (nth order) asymmetric 

FRF ( ( )asym

nH  )  is computed by using Equation (10), 

(11), (12) and (13). In this step, there is an important 

problem because of  1, ,n nH j j   function. In 

FRFs, if order of the input harmonics changes, the FRF 

changes. But this change may not effect the output 

function (yn(t)) [14]. For eliminating this problem, the 

symmetric FRF ( (.)sym

nH ) is used and a better analysis 

can be performed. The result of (.)sym

nH function is 

independent from the order of variables. The symmetric 

function is formulated as Equation (16) [16, 17].  
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For example, in the symmetrization process of 5th 

order asymmetric FRF, n!=120 permutations of n=5 input 

harmonics are generated firstly as Table 1.  

 
 

Table 1. Generation of permutations for a 5th order FRF. 

 

 m

n

asyH   
Harmonics 

1. 2. 3. 4. 5. 

P
er

m
u
ta
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o
n
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1. 1j  2j  3j  4j  5j  
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3. 
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. 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

118. 5j  4j  2j  3j  1j  

119. 5j  4j  3j  1j  2j  

120. 5j  4j  3j  2j  1j  

 

 

After obtaining the permutations, they are applied to 

the FRF one by one and all results are added. Finally the 

summation is divided by the number of permutations and 

the symmetric function is obtained as Equation (17).  
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(17) 

As an example, the parameters of the system model in 

Equation (8) are determined as in Equation (18) and the 

5th symmetric FRF can be used for getting results. 

m=240 kg, k=16000 N/m, a1=296 Ns/m, a2=2000 Ns/m,  

a3=800 Ns/m     (18) 

 

The graphics in Figs. 5 and 6 are the magnitude and 

the phase response of the 5th symmetric FRF of the system 

for the parameters in Equation (18). Since the FRF is 5th, 

there are five input harmonics according to the method. 

For that reason the graphics are 3-D. Because of 

dimensions limitation, some of the harmonics are chosen 

at same frequency value for visualisation the results. In the 

graphics, the x axis is defined as 1 2 3 4       and 

the y axis is defined as 5 . The values of x and y axis are 

between 0 and 20 rad/sec. The z axis contains the results. 

Figs. 7 and 8 are the contour plots of Figs. 5 and 6 that 

they can be used for more detailed examination. 

 

 
Fig. 5. Magnitude graphic of 5th order FRF. 

 

 
Fig. 6. Phase graphic of 5th order FRF. 

 

 
 

Fig. 7. Contour plot of magnitude graphic of  

5th order FRF. 
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Fig. 8. Contour plot of phase graphic of 5th order FRF. 

 
Sample applications of the old and new algorithms 

presented in [16] can be seen broadly in the study of 
KAÇAR [17]. 

 
4. Investigation of computational load 
 
In the Volterra Series method, the most important 

factors, which effect computational load and realization 
time of analysis, are the order of desired FRF and the 
number of output components in analyzed term. If the 
order of terms and FRFs increases, computational load and 
realization time of analysis increases too and this situation 
is normal. Spectacular feature of the situation is the 
logarithmic increment of the number of combinations and 

permutations, as in Table 2. Entire numbers of 
combinations and permutations, which can contribute nth 
order FRF, are given in Table 2 for all , ( )asym

n pH   functions 
which can consist up to n=10. The numbers of 
combinations and permutations are related to the desired 
FRF order (n) and the number of output components of 
analyzed term (p). The numbers in Table 2 are obtained as 
results of former three steps of the simplified algorithm.  

When the analysis is performed by using the 
simplified algorithm, the process load (number of 
combinations and permutations) may be very low or high 
according to values of n and p, as seen in Table 2. 
Especially, for higher order FRFs, there are too many 
permutations remarkably for some p numbers. In Table 2, 
all numbers of combinations and permutations are 1, if p is 
equal to n or 1 for all n values. When n increases, number 
of combinations and permutations increases also. The most 
remarkable point in Table 2 is that number of permutations 
is maximum value, when p is equal to n/2 for even n 
numbers and p is equal to up(n/2) for odd n numbers. For 
other p values, numbers of combination and permutations 
are lower. For example, the highest combination and 
permutation values (7 and 126) consist for n=10 and p=5. 
Whereas numbers of permutation is equal to 9 for p=9 or 
p=2. As result, the process load relates n and p values and 
it also relates the difference between n and p. Process time 
of each step and total process time of the simplified 
algorithm is shown in Table 3. The time periods in Table 3 
are obtained by using a computer which has a 
configuration as seen in Table 4. 

 

Table 2. The numbers of combinations and permutations for all 
, ( )asym

n pH  functions up to n=10. 

n,p 
The numbers of 
combinations  

The numbers of 
permutations 

n,p 
The numbers of 
combinations  

The numbers of 
permutations 

1,1 1 1 8,1 1 1 
2,1 1 1 8,2 4 7 
2,2 1 1 8,3 5 21 
3,1 1 1 8,4 5 35 
3,2 1 2 8,5 3 35 
3,3 1 1 8,6 2 21 
4,1 1 1 8,7 1 7 
4,2 2 3 8,8 1 1 
4,3 1 3 9,1 1 1 
4,4 1 1 9,2 4 8 
5,1 1 1 9,3 7 28 
5,2 2 4 9,4 6 56 
5,3 2 6 9,5 5 70 
5,4 1 4 9,6 3 56 
5,5 1 1 9,7 2 28 
6,1 1 1 9,8 1 8 
6,2 3 5 9,9 1 1 
6,3 3 10 10,1 1 1 
6,4 2 10 10,2 5 9 
6,5 1 5 10,3 8 36 
6,6 1 1 10,4 9 84 
7,1 1 1 10,5 7 126 
7,2 3 6 10,6 5 126 
7,3 4 15 10,7 3 84 
7,4 3 20 10,8 2 36 
7,5 2 15 10,9 1 9 
7,6 1 6 10,10 1 1 
7,7 1 1    

 



Investigaton of computational load and parallel computing of Volterra series method for frequency analysis of nonlinear systems  561 

 

Table 3. Obtained periods of all 
, ( )asym

n pH  functions up to n=10. 

 

N,p 

Comb. 

Time 

(sec.) 

Group 

Time 

(sec.) 

Fy Func. 

Time 

(sec.) 

Total 

Time 

(sec.) 

n,p 

Comb. 

Time 

(sec.) 

Group 

Time 

(sec.) 

Fy Func. 

Time 

(sec.) 

Total 

Time 

(sec.) 

1,1 0.00006 0.00034 0.00032 0,00072 8,1 0.00008 0.00095 0.0010 0,00203 

2,1 0.00009 0.00057 0.00049 0,00115 8,2 0.00051 0.0041 0.0117 0,01631 

2,2 0.00036 0.00060 0.00059 0,00155 8,3 0.00082 0.0127 0.0301 0,04362 

3,1 0.00009 0.00063 0.00067 0,00139 8,4 0.0013 0.0061 0.0576 0,065 

3,2 0.00021 0.00069 0.0013 0,0022 8,5 0.0009 0.0049 0.0708 0,0766 

3,3 0.00048 0.0019 0.00098 0,00336 8,6 0.00087 0.0051 0.0393 0,09117 

4,1 0.00007 0.00073 0.00067 0,00147 8,7 0.00081 0.0017 0.0144 0,01691 

4,2 0.00042 0.0013 0.0022 0,00392 8,8 0.0008 0.0017 0.0022 0,0047 

4,3 0.00037 0.00096 0.0028 0,00413 9,1 0.00009 0.0024 0.0012 0,00369 

4,4 0.00052 0.0010 0.0013 0,00282 9,2 0.00052 0.0101 0.0126 0,02322 

5,1 0.00009 0.00083 0.00088 0,0018 9,3 0.0011 0.0137 0.0459 0,0607 

5,2 0.0004 0.0016 0.0035 0,0055 9,4 0.0013 0.0072 0.0864 0,0949 

5,3 0.00056 0.0019 0.0084 0,01086 9,5 0.0013 0.0070 0.1228 0,1311 

5,4 0.00050 0.0012 0.0062 0,0079 9,6 0.0011 0.0046 0.1288 0,1345 

5,5 0.00055 0.0012 0.0014 0,00315 9,7 0.00095 0.0034 0.0533 0,05765 

6,1 0.00009 0.00092 0.00098 0,00199 9,8 0.00087 0.0020 0.0283 0,03117 

6,2 0.00051 0.0028 0.0052 0,00851 9,9 0.0010 0.0021 0.0028 0,0059 

6,3 0.00066 0.0029 0.0105 0,01406 10,1 0.00009 0.0011 0.0012 0,00239 

6,4 0.00064 0.0026 0.0124 0,01564 10,2 0.0016 0.0068 0.0187 0,0271 

6,5 0.00056 0.0012 0.0078 0,00956 10,3 0.0012 0.0125 0.0487 0,0624 

6,6 0.0007 0.0013 0.0018 0,0038 10,4 0.0016 0.0115 0.1203 0,1334 

7,1 0.00005 0.00088 0.00099 0,00192 10,5 0.0018 0.0101 0.2336 0,2455 

7,2 0.00039 0.0064 0.0057 0,01249 10,6 0.0015 0.0076 0.3160 0,3251 

7,3 0.0008 0.0050 0.0298 0,0356 10,7 0.0011 0.0069 0.2559 0,2639 

7,4 0.00075 0.0042 0.0435 0,04845 10,8 0.0010 0.0036 0.0773 0,0819 

7,5 0.00065 0.0072 0.0300 0,03785 10,9 0.00097 0.0022 0.0231 0,02627 

7,6 0.00076 0.0014 0.0107 0,01286 10,10 0.0011 0.0023 0.0071 0,0105 

7,7 0.00075 0.0015 0.0020 0,00425      

 

 
Table 4. Configuration of used computer. 

 

Processor Model Intel(R) Core(TM) i7 CPU 950  

Num. of Threads 8 threads 

Processor Freq. 3.07 GHz 

Ram Capacity 4.00 GB 

Operating 

System 

Win 7 64 Bit 

 

 

The results in Table 3 support the explanations of 

above related to the numbers of combinations and 

permutations according to n and p values and their process 

load. In order to understand better the results are presented 

graphically in Fig. 9. 

 

 
 

Fig. 9. Obtained periods of all  

, ( )asym

n pH  functions up to n=10. 

 

As seen in Fig. 9, while the simplified algorithm is 

running, major amount of the time is spent in step of fy(.) 

function which is the third step of the algorithm. The most 

important and significant point of the graphic is that the 

spent time is significantly related to difference between 

FRF order and the number of output components more 

than FRF order. As mentioned above, the maximum time 

for each value of n is composed around p = n / 2. 
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Accordingly, while the systems are being analyzed by this 

method, it can be said that numbers of FRF orders should 

be chosen equal or close to numbers of output components 

for lower spent time periods. 

The simplified algorithm examined above forms a part 

of the Volterra method. After nth order asymmetric FRF is 

obtained by the Volterra method, it must be symmetrized 

and then true results can be obtained. So that the Volterra 

method can be separated in two parts. The first part is 

obtaining the nth order asymmetric FRF, the second part is 

symmetrization of the FRF and obtaining the results. 

When higher order FRFs are considered, the first part 

spends much less time than the second part. This seems 

clearly from the results in Table 5 which were obtained 

from the system model in Equation (8) for m=240 kg, 

k=16000 N/m, a1=296 Ns/m, a2=296 Ns/m, a3=296 Ns/m 

(parameter values from [22]), 8 frequency sets up to n=8. 

 

 
Table 5. Obtained time periods of FRF and the results up to n=8 for the system model in Equation (8). 

 

n 

 

FRF time (sec) 
Symmetrization and 

result time (sec) 
n 

 

FRF time (sec) 
Symmetrization and 

result time (sec) 

1 0.00167668 0.0018734 5 0.015279 0.84472 

2 0.0036378 0.0085667 6 0.033202 6.7618 

3 0.0073273 0.032149 7 0.049726 60.6733 

4 0.010497 0.14523 8 0.062537 606.8232 

 

 

 
Fig. 10. Obtained time periods of FRF and the results  

up to n=8 for the system model in Equation(8). 

 

 

It is clear from Fig. 10 that if order (n) of the desired 

FRF increases, process time also increases. However, the 

difference between obtained time periods of the FRFs and 

time spent for symmetrization and the results increases 

logarithmically with increasing of n. For lower-order 

FRFs, symmetrization and obtaining the results take less 

time. When the order increases, they begin to take a lot of 

time for higher order FRFs. The reason of this is 

logarithmical increasing of permutations which is a result 

of increasing of the order of FRF in symmetrization 

process given in Equation (10). Therefore, the process load 

and time spent for obtaining the results increase 

logarithmically. For this reason, while an analysis of a 

non-linear system is performed by The Volterra Series 

method with the simplified algorithm, choosing the order 

of desired FRF equal to order of the highest order term is 

more useful for obtaining the results. On the other hand, 

decreasing the symmetrization and result time is more 

efficient way to decrease the total time of the 

method.Using parallel computing methods is an 

appropriate way for providing time saving. 

 

 

5. Parallel computing of the method 
 

Today, majority of the computers have multiple 

processors, multi-thread CPUs or GPUs. Traditional 

programming approaches are not suitable for using the 

hardware. For this reason, parallel computing methods are 

used to benefit the capacity of the computers fully and to 

perform processes faster. There are numerous studies 

about parallel computing in the field of nonlinear systems 

analysis and simulation [23 - 27]. 

One of the main platforms of parallel programming is 

the multi-thread computers. Today, a PC which has an 

average configuration, has a multi-thread (2, 4, 6, 8, etc. 

threads) CPU. For this reason, a complex algorithm 

required high processing capacity and speed as Volterra 

Series Method, especially its symmetrization process, 

should be programmed in parallel to use all threads in 

CPU. The architecture for used computer with a multi-

thread (N threads) CPU can be visualized generally as in 

Fig. 11. If the method is programmed in parallel and run in 

a computer with a multi-thread CPU which has N threads, 

the method is decomposed in N threads. Thus, the 

computer uses the CPU full capacity and the process is 

finished in shorter time. 
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Fig. 11. The architecture of the used computer with a multi-thread CPU. 

 

 
Fig. 12. The flowchart of the parallelized method. 
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The method has been coded in data-parallel by using 

MATLAB program and its parallel processing toolbox. 

This toolbox provides programming in all parallel 

approaches (task-parallel, data-parallel, distributed 

computation, CUDA and multi-thread programming) [28]. 

In this study, for data-parallel programming, parallel “for” 

(parfor) loops provided by MATLAB parallel processing 

toolbox have been used with the computer introduced in 

Table 4 for computing numerical results of the system 

given in Equation (8) . The parallelization of the method is 

shown in Fig. 12. As seen in Fig. 12, symmetrisation and 

computing numerical results step is parallelized and same 

tasks for different data are processed concurrently by 8 

threads in CPU.  

 

 
Table 6. Process times obtained after parallel computing (in seconds). 

 

 Number of threads 

 sequental 2 3 4 5 6 7 8 

O
rd

er
 o

f 
F

R
F

 

1 0.0018734 0.10931 0.12956 0.13632 0.16119 0.20276 0.22 0.23824 

2 0.0085667 0.16807 0.21187 0.21576 0.23543 0.27783 0.31698 0.34043 

3 0.032149 0.17643 0.21395 0.22001 0.24021 0.2789 0.31784 0.38403 

4 0.14523 0.23629 0.2598 0.24593 0.28585 0.31233 0.34678 0.38868 

5 0.84472 0.56451 0.47831 0.43685 0.42302 0.49162 0.57606 0.54123 

6 6.7618 3.4361 2.6603 1.9168 2.1936 2.3569 2.3526 1.8041 

7 60.6733 29.4879 22.1357 15.3056 16.412 18.3519 19.0018 13.2724 

8 606.8232 296.2393 228.5412 153.9728 168.0649 185.03 199.2235 130.1962 

 

Process times obtained after parallel computing of 

symmetrisation and numerical results step are given in 

Table 6. The time results have been obtained for the FRFs 

up to 8
th

 order by using 8 frequency sets (one set for each 

thread). These results should be used for determining the 

performance of the parallel computing. The performance 

can be assessed with criterias such as speedup and 

efficiency. The speedup and the efficiency are computed 

by using Equation 19 and 20 [29]. 

 

Sp(n) = T*(n) / Tp(n)        (19) 

 

Ep(n) = Sp(n) / p     (20) 

 

where p is the number of threads, n is order of FRF as 

identifier of computation load of the process, Sp(n) is 

speedup, T*(n) is the process time of n
th

 order FRF as 

sequential algorithm performed with single thread in Table 

6, Tp(n) is the process time of n
th

 order FRF processed 

with p threads and Ep(n) is the efficiency. Fig. 13 and 14 

show the speedup and the efficiency of parallel computing. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13. Speedup of parallel computing. 

 

 
 

Fig. 14. Efficiency of parallel computing. 
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For the sample model in Equation 8, Fig. 13 and 14 

shows that the multi-thread acceleration is not effective for 

lower order FRFs, but it is very useful for higher order 

FRFs bigger than 4
th

 order. Because the parallel overheads 

of the parallel computing are higer than the process times 

of lower order FRFs. So, it can be said that the parallel 

computing should be applied for computing FRFs which 

have high complexity and computational load. 

The other factor affecting the performance of the 

parallel computing is the number for threads. It is expected 

that the speedup increases proportionally with number of 

threads, but the parallel overhead and the unbalanced load 

block the proportional increase. The speedup graphic in 

Fig. 13 shows that the speedup increases between 2 and 4 

threads and then it decreases between 4 and 7 threads. For 

8 threads, the speedup is at the top point of the graphic. 

Although the speedup is the highest value for 8 threads, it 

can not be said the same for the efficiency. For 8
th

 order 

FRF, the efficiency is the highest value for 2 threads and 

the lowest value for 7 threads and for 8 threads the 

efficiency is nearly 0.6. Because of the appropriate parallel 

overhead and computational load, processes for 2 and 4 

threads are the most efficient. At the same time, the 

efficiency is higer than 1 for the process of 2 threads. This 

is called superlinearity in parallel computing [30].  

All of these put forth the speedup and the efficiency 

of parallel computing of Volterra Series Method are 

releated with the complexity of the model, load balance of 

the threads and parallel overhead of the process. While 

selecting of order of FRFs and number of threads, these 

factors should be considered.  

 

 

6. Conclusions 
 

In this work, the simplified algorithm which was 

presented by PEYTON JONES was coded in MATLAB
®
 

platform and the spent time periods for each step of the 

algorithm and symmetrization process were determined for 

a third order non-linear system. So that, for the computer, 

the process load of the algorithm steps and symmetrization 

process was designated. Obtained time periods were 

presented in tabular form and were visualized graphically. 

After that, parallel computing of the method performed 

with multi-thread (8 threads) computer. 

It is seen that major part of spent time for 

implementation of the method, especially for higher order 

FRFs, is used for symmetrization process, when obtained 

results are analyzed. Creation process of fy(.) function is 

determined as the longest process in the simplified 

algorithm. The common point of symmetrization and 

creation of fy(.) function is that these processes contain a 

large number of permutations related to desired FRF order. 

According to this situation, it can be said that the process 

load of the new Volterra Series Method presented by 

PEYTON JONES consists mainly because of permutation 

operations. Besides, since number of permutations 

increases because of increasing of the FRF orders, the time 

periods of processes also increase. This increment, 

especially for symmetrization process, is logarithmic. This 

significantly reduces effective availability of the method 

for higher order systems and FRFs.  

One of the ways to use the method more effectively is 

parallel programming and multi-thread programming is the 

most general and simple type of the parallel programming. 

In this study, Volterra Series Method is coded in parallel 

by using parallel “for” loops provided by MATLAB
®

 

Parallel Processing Toolbox for parallel computing. As a 

result of this, it is seen that the parallel computing is more 

efficient for higher order and complex FRFs. The parallel 

overhead and the load balancing are two factors which 

affect the speedup and the efficiency. So, the number of 

threads and the order of FRFs should be selected 

appropriately for a good speedup and efficiency. To get 

better results, Volterra Series Method can be modified as a 

parallel algorithm for parallel programming.  
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